Homodienyl [1,5]-Hydrogen Shift of cisand trans-N-Acyl-2-alkylcyclopropylimines

Pei-Lin Wu,* Hong-Cho Chen, and May-Ling Line

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 701, Republic of China

Received September 17, 1996

In 1964, Ellis and Frey investigated the thermal rearrangement of cis- and trans-1-methyl-2-vinylcyclopropanes to yield cis-1,4-hexadiene. ${ }^{1}$ The cis configuration of the product from the cis-cydopropane coupled with the low activation energy ($\mathrm{E}_{\mathrm{a}}=31.2 \mathrm{kcal} / \mathrm{mol}$) suggested that this hydrogen rearrangement proceeds by a suprafacial, concerted homodienyl [1,5]-hydrogen shift. Alternatively, it can be described as a retro-ene reaction. In contrast, the higher activation energy ($\mathrm{E}_{\mathrm{a}}=48.6 \mathrm{kcal} /$ mol) and the failure to detect any trans-1,4-hexadiene product from the trans-cyclopropane led to the postulation that this reaction proceeds by a diradical intermediate (Scheme 1). The intermediate can then proceed to the product by a radical hydrogen abstraction or by cyclization to the cis-cyclopropane, which undergoes a rapid homodienyl [1,5]-hydrogen shift. This rearrangement has received considerable attention with respect to its mechanism, ${ }^{2}$ site selectivity, ${ }^{3}$ and synthetic applications. ${ }^{4}$

Our recent work described the ring expansion of N -(methoxycarbonyl)cyd opropylimines 1 with phenyl and acyl substituents at C-1 or C-2 to N-(methoxycarbonyl)-2-pyrrolines $\mathbf{2}$ by flash vacuum thermolysis (FVT) (Scheme 2). However, compounds with methyl substituents at these positions did not lead to the desired pyrrolines. ${ }^{5}$

Continuing our interest in the thermal reactions of 2-methylcyclopropylimines ($\mathbf{1}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$), in this work, we investigate the FVT of a series of 2-alkylcyclopropylimines 8 that were derived from their thermal precursors, cis- and trans-N,O-bis(methoxycarbonyl)-N(cyclopropylmethyl)hydroxylamines 7 by elimination of CO_{2} and MeOH .

The general cyclopropanation procedure ${ }^{6}$ employs an appropriate alkene (allyl bromide, allyltrimethylsilane,

[^0]
Scheme 1

Scheme 2

or allylbenzene) and ethyl diazoacetate in the presence of catalytic rhodium(II) diacetate. This procedure produced esters $\mathbf{3 a}-\mathbf{c}$ and the cis and trans isomers were separated by careful silica gel chromatography using EtOAc/hexane (1:20) as eluent. A [2,3]-sigmatropic rearranged product, ethyl 2-bromo-4-pentenoate, accompanied the synthesis of $\mathbf{3 a}$. ${ }^{6,7}$ Treating the bromoester 3a with methoxide, followed by acid workup and evaporation at $50^{\circ} \mathrm{C}$, produced the methoxy acid 3 d . The cyano ester, 3e, was obtained by reacting 3a with potassium cyanide. Reduction with lithium aluminum hydride (which also reduced the bromine of $\mathbf{3 a}$) furnished the alcohols 4ad. Lithium borohydride was used to selectively reduce the ester of $\mathbf{3 e}$ to $\mathbf{4 e} .^{8}$ Oxidation of the alcohols 4 to aldehydes 5, followed by oximination to oximes 6, reduction again, and acylation, yielded diacylated hydroxylamine 7 (Scheme 3). Moreover, the cis and trans isomers were identified by the presence or lack of NOE between the two methylene signals in alcohols 4 or diacylated hydroxylamines 7.

As previously shown, N,O-diacylated hydroxylamines 7 readily produced the N -acylimines 8 under thermal conditions. ${ }^{9}$ Therefore, flash vacuum thermolysis of either cis- 7 or trans -7 at $450^{\circ} \mathrm{C}$ and 0.01 Torr resulted in formation of 1-cis-1,4-pentadienylcarbamates 9 , the product of homodienyl [1,5]-hydrogen shift from 8 (Scheme 4). The cis configuration of the 1,2-double bond in 9 was established by the $7.4-7.6 \mathrm{~Hz}$ of coupling constant between $\mathrm{H}-1$ and $\mathrm{H}-2$ together with the presence of NOE between the same protons. The 4,5-double bond geometry tended to be the more stable trans configuration; however, $\mathbf{9 b}$ and $\mathbf{9 e}$ were a mixture of 4 -cis and 4 -trans.

The significantly higher yield of the rearranged product from the cis-7 series over that of the trans-7 series suggested that cis-8 undergoes the symmetry-allowed, concerted homodienyl [1,5]-hydrogen shift. The direct transfer of hydrogen is precluded on geometric grounds for trans-8. Such a reaction likely involves cleavage of the three-membered ring forming a diradical intermediate followed by rotation around single bonds to attain
(7) Doyle, M. P.; Griffin, J . H.; Chinn, M. S.; van Leusen, D. J . Org. Chem. 1984, 49, 1917.
(8) Brown, H. C.; Narasimhan, S.; Choi, Y. M. J . Org. Chem. 1982, 47, 4702.
(9) See ref 5 and: (a) Wu, P. L.; Chu, M.; Fowler, F. W. J . Org. Chem. 1988, 53, 963. (b) Lin, J. M.; Koch, K.; Fowler, F. W. J. Org. Chem. 1986, 51, 161. (c) Cheng, Y. S.; Lupo, A.; F owler, F. W. J . Am. Chem. Soc. 1983, 105, 7696.
Scheme 3

Then

Scheme 4

	yield of 9 from cis-7	yield of 9 from trans-7
a: $R=H$	60%	15%
b: $R=\mathrm{TMS}$	66%	28%
c: $R=\mathrm{Ph}$	53%	9%
d: $R=\mathrm{OCH}$	49%	11%
e: $R=\mathrm{CN}$	68%	9%

the geometry required for the hydrogen abstraction. The low yields of the rearranged products in the trans-7 series might be due to fragmentation and polymerization.

To examine the potential of this reaction in organic synthesis, we investigated the homodienyl [1,5]-hydrogen shift in a bicyclic ring system. The requisite diacylated hydroxylamines endo-10 and exo- $\mathbf{1 0}$ were readily prepared from cyclohexene according to the procedure described above. Flash vacuum thermolysis of endo-10 and exo-10 provided the cis-enyl carbamate $\mathbf{1 1}$ in 75% and 29% yield, respectively (Scheme 5). Thus, incorporating thecydopropyl imineintothemorestrained bicyclo[4.1.0]heptane framework appeared to further accelerate the homodienyl [1,5]-hydrogen shift.

Finally, we explored the possibility of competition between the homodienyl [1,5]-hydrogen shift leading to

Scheme 5

Scheme 6

a dienylcarbamate versus ring expansion to a pyrroline. Accordingly, compounds cis- $\mathbf{1 2}$ and trans- 12 were prepared from α-methylstyrene. Thermolysis of trans- $\mathbf{1 2}$ (methyl cis to methylene) furnished a 61% yield of homodienyl [1,5]-hydrogen-rearranged product 13, exclusively (Scheme 6). Interestingly, this is the same yield obtained on rearrangement of the compound cis-7a, lacking the phenyl group. On the other hand, evaporation of cis- $\mathbf{1 2}$ (methyl trans to methylene) via oven heating furnished 43% of hydrogen-rearranged product 13 and 7% of ring expanded pyrrol ine 14. Here, we have been unable to obtain clear ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 14 due to the existence of rotamers that are afforded by the hindered rotation of amide group and the bulky phenyl group at C-5. The absence of an NH absorption in the IR spectrum and the molecular ion at $\mathrm{m} / \mathrm{z} 217$ in the GC-MS spectra can confirm the presence of 14. Formation of $\mathbf{1 3}$ from cis- $\mathbf{1 2}$ can apparently account for the isomerization of cis- $\mathbf{1 2}$ to trans- $\mathbf{1 2}$ under FVT conditions. ${ }^{10}$ The absence of $\mathbf{1 4}$ after reaction of trans-12, and any other pyrrolines from the other class described above reveals that the homodienyl [1,5]-hydrogen shift processes a markedly lower activation energy than that of the ring-expansion reaction.

This paper describes, to our knowledge, the first observation of the homodienyl [1,5]-hydrogen shift of cisand trans-N-acylcyclopropylimines, which were generated by thermally eliminating diacylated hydroxylamines. The geometry required for 1,5-hydrogen shift produces the product's cis configuration in a 1,2-double bond. The symmetry-allowed homodienyl [1,5]-hydrogen shift appears to be preferred over ring expansion in the N -acyl-2-methyl-2-phenylcyclopropyl imine.

Experimental Section

General Methods. Cydopropanation of allyl bromide, allyltrimethylsilane, or allyl benzene with ethyl diazoacetate in the presence of catalytic rhodium(II) diacetate yielded cis- and trans-cyclopropyl esters $\mathbf{3 a},{ }^{6 \mathrm{~b}} \mathbf{3 b},{ }^{4 \mathrm{a}}$ and $\mathbf{3 c}^{6 c}$ after chromatography over silica gel eluting with EtOAc/hexane (1:20). Functionality transformation from cis- or trans-3a to cis- or trans-3d and 3e was achieved by reacting 3a and sodium methoxide ${ }^{11}$ followed

[^1]by acid workup and evaporation at $50^{\circ} \mathrm{C}$ and the reaction between 3a and potassium cyanide, ${ }^{12}$ respectively. Reduction with lithium aluminum hydride ${ }^{13}$ would produce cis- or trans-4a-4d; otherwise, reduction with lithium borohydride ${ }^{8}$ would yield cis- or trans-4e. PCC oxidation produced aldehydes cisor trans-5a-5e. ${ }^{14}$ Then, oximes 6 were obtained by the reaction of aldehydes 5 and hydroxylamine. ${ }^{15}$

General Procedure for Preparation of Diacylated Hydroxylamines. A mixture of oxime 6 (5 mmol) and pyridineborane ($0.93 \mathrm{~g}, 10 \mathrm{mmol}$) in 8 mL of 95% ethanol was maintained at $0^{\circ} \mathrm{C}$. Then, 7.5 mL of $10 \% \mathrm{HCl}$ solution was added over a 20 min period with vigorous mixing, and the mixture was stirred for 20 min at rt . Next, the solution was cooled to $0^{\circ} \mathrm{C}$, and NaOH pellets were carefully added until the pH ranged between $8-10$. The mixture was extracted with ether. The combined organic layers were dried over anhydrous MgSO_{4} and concentrated in vacuo to a volume of 50 mL . Triethylamine (1.01 g , 10 mmol) and then methyl chloroformate ($0.95 \mathrm{~g}, 10 \mathrm{mmol}$) were added dropwise to the ether solution at $0^{\circ} \mathrm{C}$. After being stirred at rt for 2 h , the solution was acidified with $10 \% \mathrm{HCl}$ solution. The ether layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The product was purified by column chromatography, eluting with EtOAc/hexane (1:8) to yield diacylated hydroxylamine cis- and trans-7a,b-e as a colorless liquid.
cis-N,O-Bis(methoxycarbonyl)-N-[(2-methylcyclopropyl)methyl]hydroxylamine (cis-7a): yield 59\%; IR (film) $1796,1728 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.2-0.0(\mathrm{~m}, 2 \mathrm{H}), 0.7-1.1$ $(\mathrm{m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 3.5-3.8(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.90 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 9.6,10.6,12.9,13.1,50.2,53.5$, 56.0, 154.9, 156.1; MS m/z (rel intensity) 217 ($9, \mathrm{M}^{+}$), 69 (100), 59 (86). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{5}$: C, 49.79; H, 6.96; $\mathrm{N}, 6.45$. Found: C, 49.95; H, 7.05; N, 6.53.
cis-N,O-Bis(methoxycarbonyl)-N-[[(2-[(trimethylsilyl)methyl]cyclopropyl]methyl]hydroxylamine (cis-7b): yield 75%; IR (film) $1796,1727 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 9 \mathrm{H})$, $-0.2-0.2(\mathrm{~m} \mathrm{2H}), 0.7-1.1(\mathrm{~m}, 4 \mathrm{H}), 3.6-3.7(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.90 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$) $\delta-1.7,11.0,11.1,12.9,15.0,50.4$, 53.4, 55.8, 154.8, 156.1; MS m/z (rel intensity) 289 (3, M^{+}), 73 (100), 59 (45). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 49.85 ; \mathrm{H}, 8.02$; N, 4.84. Found: C, 49.79; H, 8.05; N, 4.82.
trans-N,O-Bis(methoxycarbonyl)-N-[[2-[(trimethylsilyl)methyl]cyclopropyl]methyl]hydroxylamine (trans-7b): yield 62%; IR (film) 1797, $1728 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}) $\delta 0.01(\mathrm{~s}, 9 \mathrm{H})$, $0.2-0.8(\mathrm{~m}, 6 \mathrm{H}), 3.4-3.6(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-1.7,12.1,12.9,17.4,21.0,53.4,54.7,55.8$, 154.7, 156.0; MS m/z (rel intensity) 289 (4, M ${ }^{+}$), 73 (100), 59 (49). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}, 49.85 ; \mathrm{H}, 8.02 ; \mathrm{N}, 4.84$. Found: C, 49.84; H, 8.02; N, 4.82.
cis-N,O-Bis(methoxycarbonyl)-N-[(2-benzylcyclopropyl)methyl]hydroxylamine (cis-7c): yield 85\%; IR (film) $1794,1724 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.2-0.3(\mathrm{~m}, 1 \mathrm{H}), 0.8-0.9$ $(\mathrm{m}, 1 \mathrm{H}), 1.1-1.3(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.0,8.0 \mathrm{~Hz}), 2.83$ (dd, 1H, J = 15.0, 5.0 Hz), 3.6-3.8 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.2,13.4,16.4,50.6$, $53.5,56.0,125.8,128.0,128.2,141.5,154.8,156.1 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (rel intensity) 293 (1, M ${ }^{+}$), 91 (100), 59 (23). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19}$ $\mathrm{NO}_{5}: \mathrm{C}, 61.46 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.78$. Found: C, 61.34; H, 6.55; N, 4.75.
trans-N,O-Bis(methoxycarbonyl)-N-[(2-benzylcyclopropyl)methyl]hydroxylamine (trans-7c): yield 77\%; IR (film) $1794,1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.4-0.5(\mathrm{~m}, 2 \mathrm{H}), 0.9-1.1$ $(\mathrm{m}, 2 \mathrm{H}), 2.47$ (dd, $1 \mathrm{H}, \mathrm{J}=14.6,6.8 \mathrm{~Hz}), 2.70(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.6$, $5.8 \mathrm{~Hz}), 3.5-3.6(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 7.2-7.4(\mathrm{~m}$, $5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.3,15.8,18.3,38.9,53.5,54.6,56.0$, 125.9, 128.2, 141.1, 154.8, 156.1; MS m/z (rel intensity) 293 (2, M^{+}), 91 (100), 59 (26). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}, 61.46$; H, 6.53; N, 4.78. Found: C, 61.39; H, 6.62; N, 4.70.
cis-N,O-Bis(methoxycarbonyl)-N-[[2-methoxymethyl)cyclopropyl]methyl]hydroxylamine (cis-7d): yield 73\%; IR

[^2](film) 1795, $1729 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.2-0.3(\mathrm{~m}, 1 \mathrm{H}), 0.7-$ $0.9(\mathrm{~m}, 1 \mathrm{H}), 1.1-1.3(\mathrm{~m}, 2 \mathrm{H}), 3.1-4.0(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.5,13.1,15.0,50.4$, 53.6, 56.0, 58.3, 72.2, 154.9, 156.1; MS m/z (rel intensity) 247 (0.5, M^{+}), 67 (100), 59 (76). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{6}$: C, 48.61; H, 6.93; N, 5.67. Found: C, 48.41; H, 7.02; N, 5.63.
trans-N,O-Bis(methoxycarbonyl)-N-[[2-(methoxymethyl)cyclopropyl]methyl]hydroxylamine (trans-7d): yield 73%; IR (film) 1797, $1728 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.4-0.6,0.9-$ $1.1(\mathrm{~m}, 4 \mathrm{H}), 3.1-3.3(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.5-3.6(\mathrm{~m}, 2 \mathrm{H}), 3.78$ (s, 3H), 3.91 (s, 3H); ${ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right) \delta 8.5,14.2,16.8,53.5$, 54.1, 56.0, 58.1, 75.4, 154.7, 156.1; MS m/z (rel intensity) 247 (1, M^{+}), 67 (100), 59 (72); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{6}\left[\mathrm{M}^{+}\right]$ 247.1056, found 247.1055.
cis-N,O-Bis(methoxycarbonyl)-N-[[2-(cyanomethyl)cyclopropyl]methyl]hydroxylamine (cis-7e): yield 40\%; IR (film) 2250, 1792, $1730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.2-0.3(\mathrm{~m}$, $1 \mathrm{H}), 0.9-1.0(\mathrm{~m}, 1 \mathrm{H}), 1.2-1.4(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.5$, $7.6 \mathrm{~Hz}), 2.58(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.5,6.2 \mathrm{~Hz}), 3.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.3$, 8.0 Hz), 3.80 (dd, $1 \mathrm{H}, \mathrm{J}=15.3,6.0 \mathrm{~Hz}$), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 9.9,11.9,13.6,17.0,49.8,53.8,56.3$, 119.0, 154.7, 156.0; MS m/z (rel intensity) 242 ($0.1, \mathrm{M}^{+}$), 67 (86), 59 (100). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 49.61; H, 5.83; N, 12.57. Found: C, 49.96; H, 6.06; N, 12.21.
trans-N,O-Bis(methoxycarbonyl)-N-[[2-cyanomethyl)cyclopropyl]methyl]hydroxylamine (trans-7e): yield 49\%; IR (film) 2249, 1793, $1726 \mathrm{~cm}^{-1}$; ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}) $\delta 0.6-0.7$ (m, 2 H), 1.0-1.2 (m, 2H), $2.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.3,6.2 \mathrm{~Hz}), 2.48(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=17.3,5.8 \mathrm{~Hz}$), 3.46 (dd, 1H, J = 15.1, 7.1 Hz), 3.64 (dd, $1 \mathrm{H}, \mathrm{J}=15.1,6.3 \mathrm{~Hz}$), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 10.0,12.8,16.0,20.7,53.7,53.8,56.2,118.0,154.8,156.0 ;$ MS m / z (rel intensity) $242\left(2, \mathrm{M}^{+}\right), 67(100), 59$ (90); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$242.0903, found 242.0904.

General Method for FVT. ${ }^{5}$ Diacylated hydroxylamines 7 $(10-300 \mathrm{mg}$) were first frozen in a liquid nitrogen bath, and then a vacuum was applied. Once the vacuum (0.01 Torr) had been established, the heater was turned on. The temperature of the hot tube was regulated by a temperature controller. When the set temperature reached to $450^{\circ} \mathrm{C}$, the receiver was placed in a liquid nitrogen bath, the reactant was heated until it thawed, and the reactant evaporated through the hot tube. The product was condensed and collected in the receiver at liquid nitrogen temperature and washed out with diethyl ether. The crude product was purified by column chromatography over silica gel using EtOAc/C6 H_{14} as eluent to afford dienylcarbamates 9. Scheme 4 provided the yields.

Methyl cis-1,4-pentadienylcarbamate (9a): IR (film) 3322, $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.72(\mathrm{br} \mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=7.6,6.0 \mathrm{~Hz})$, 3.72 (br s, 3H), 4.68 (br q, 1H, J $=7.6 \mathrm{~Hz}$), $5.0-5.2(\mathrm{~m}, 2 \mathrm{H})$, 5.80 (ddt, $1 \mathrm{H}, \mathrm{J}=17.1,10.0,6.0 \mathrm{~Hz}), 6.3-6.7(\mathrm{br} \mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 29.5,52.4,105.4,115.2,123.5,135.6,154.2 ; \mathrm{MS}$ m/z (rel intensity) 141 (47, M^{+}), 82 (100), 59 (60); HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$141.0790, found 141.0791 .

Methyl 5-(trimethylsilyl)-cis,trans-1,4-pentadienylcarbamate and methyl 5-(trimethylsilyl)-cis,cis-1,4-pentadienylcarbamate mixture (9b): IR (film) 3324, $1717 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) for the major cis,trans isomer: $\delta 0.03(\mathrm{~s}, 9 \mathrm{H}), 2.78$ (br t, $2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}$), $3.70(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.67(\mathrm{br} \mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.4$ $\mathrm{Hz}), 5.72(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=18.5,1.4 \mathrm{~Hz}), 5.89(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=18.5,5.5$ $\mathrm{Hz}), 6.3-6.8(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for the major cis,trans isomer $\delta-1.4,32.5,52.4,105.2,123.3,131.1,143.2,154.1 ; \mathrm{MS}$ m / z (rel intensity) 213 (21, M^{+}), 73 (100), 59 (15); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Si}\left[\mathrm{M}^{+}\right]$213.1185, found 213.1184.

Methyl 5-phenyl-cis,trans-1,4-pentadienylcarbamate (9c): White solid; mp 72-74 ${ }^{\circ} \mathrm{C}$ (hexane); IR (film) 3335, $1699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.89(\mathrm{tt}, 2 \mathrm{H}, \mathrm{J}=7.0,1.3 \mathrm{~Hz}), 3.73(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, 4.77 (br q $1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}$), 6.17 (dt, $1 \mathrm{H}, \mathrm{J}=15.9,6.1 \mathrm{~Hz}), 6.45$ (dt, $1 \mathrm{H}, \mathrm{J}=15.9,1.5 \mathrm{~Hz}$), 6.2-6.7 (br m, 2H), 7.2-7.4 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.7,52.5,105.6,123.7,126.1,127.2,128.5$, 128.6, 130.6, 137.2, 154.2; MS m/z (rel intensity) 217 ($5, \mathrm{M}^{+}$), 142 (100), 59 (9). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{C}, 71.87$; $\mathrm{H}, 6.96$; $\mathrm{N}, 6.45$. Found: C, 71.78; H, 7.17; N, 6.16.

Methyl 5-methoxy-cis,trans-1,4-pentadienylcarbamate (9d): IR (film) $3323,1714 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.60(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=6.7 \mathrm{~Hz}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.5-4.7(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, 4.69 (dt, $1 \mathrm{H}, \mathrm{J}=12.7,6.7 \mathrm{~Hz}), 6.34(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=12.7,1.3 \mathrm{~Hz}$), 6.3-6.6 (br s, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.8,52.4,55.9,100.2$,

Notes

107.3, 122.8, 147.9, 154.1; MS m/z (rel intensity) 171 (12, ${ }^{+}$), 80 (100), 59 (47); HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}\left[\mathrm{M}^{+}\right] 171.0895$, found 171.0894.

Methyl 5-cyano-cis,trans-1,4-pentadienylcarbamate and methyl 5-cyano-cis,cis-1,4-pentadienylcarbamate mixture (9e): IR (film) 3323, 2225, $1715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) for the major cis,trans isomer $\delta 2.91$ (br t, $2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$), 3.74 (br s, $3 \mathrm{H}), 4.58(\mathrm{br} q, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.41(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=16.3,2.0 \mathrm{~Hz})$, $6.72(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=16.3,5.8 \mathrm{~Hz}), 6.3-6.8(\mathrm{br} \mathrm{s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for the major cis, trans isomer $\delta 28.8,52.7,100.5,101.1$, 117.2, 125.7, 151.7, 154.1; MS m/z (rel intensity) 166 (15, M+), 59 (100); HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$166.0742, found 166.0745.
endo-N,O-Bis(methoxycarbonyl)-N-(bicyclo[4.1.0]heptyl-7-methyl]hydroxylamine (endo-10). The analogous procedure for preparating diacylated hydroxylamines was followed, and endo-10 was obtained in 80% yield: IR (film) 1795, 1725 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.9-2.0(\mathrm{~m}, 11 \mathrm{H}), 3.7-3.9(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.5,15.9,18.5$, 22.1, 47.6, 53.4, 55.9, 154.8, 156.2; MS m/z (rel intensity) 257 (33, M^{+}), 108 (100), 59 (55). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}$, 56.06; H, 7.45; N, 5.45. F ound: C, 56.31; H, 7.58; N, 5.44.
exo-N,O-Bis(methoxycarbonyl)-N-(bicyclo[4.1.0]heptyl-7-methyl)hydroxylamine (exo-10). The analogous procedure for preparating diacylated hydroxylamines was followed, and exo-10 was obtained in 70\% yield: IR (film) 1795, $1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.7-1.9(\mathrm{~m}, 11 \mathrm{H}), 3.49(\mathrm{~d}, 2 \mathrm{H}$, J $=5.6 \mathrm{~Hz})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.5,20.6,21.1$, 22.8, 53.4, 54.9, 55.9, 154.8, 156.1; MS m/z (rel intensity) 257 (2, M^{+}), 108 (31), 67 (100), 59 (41). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 56.06; H, 7.45; N, 5.45. Found: C, 56.29; H, 7.51; N, 5.39.
cis-3-[2-[(Methoxycarbonyl)amino]ethenyl]cyclohexene (11). By the general method for FVT, endo-10 ($257 \mathrm{mg}, 1$ mmol) gave 11 in 75% yield (136 mg) as a colorless liquid, whereas exo-10 ($257 \mathrm{mg}, 1 \mathrm{mmol}$) gave $11 \mathrm{in} 29 \%$ yield (52 mg): IR (film) 3321, $1701 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.3-2.1(\mathrm{~m}, 6 \mathrm{H})$, 2.7-3.0 (br s, 1H), 3.71 (br s, 3H), 4.57 (br t, 1H, J $=9.0 \mathrm{~Hz}$), $5.4-5.9(\mathrm{br} \mathrm{m}), 6.41(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.3-6.8(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.9,24.7,29.2,32.9,52.4,112.9,121.7$, 128.3, 129.6, 154.1; MS m/z (rel intensity) 181 (29, M+), 78 (100), 59 (39). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 66.27; H, 8.34; N, 7.73. Found: C, 66.30; H, 8.41; N, 7.68.
cis-N,O-Bis(methoxycarbonyl)-N-[(2-methyl-2-phenylcyclopropyl)methyl]hydroxylamine (cis-12). The analogous procedure for preparating diacylated hydroxylamines was followed, and cis-12 was obtained in 71\% yield: IR (film) 1795, $1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.85$ and 0.98 (dd, each $1 \mathrm{H}, \mathrm{J}=$ 8.3, 5.0, and 5.2, 5.0 Hz), 1.2-1.3 (m, 1H), 1.38 (s, 3H), 2.86 (dd, $1 \mathrm{H}, \mathrm{J}=15.0,8.6 \mathrm{~Hz}$), 3.62 (dd, $1 \mathrm{H}, \mathrm{J}=15.0,5.5 \mathrm{~Hz}), 3.71(\mathrm{~s}$,
$3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.8,22.3$, 25.6, 27.7, 52.0, 53.2, 55.8, 126.1, 128.1, 128.8, 141.9, 154.6, 155.8; MS m/z (rel intensity) 293 (8, M ${ }^{+}$), 144 (100), 59 (32). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 61.46; $\mathrm{H}, 6.53 ; \mathrm{N}, 4.78$. Found: C, 61.21; H, 6.59; N, 4.75.
trans-N,O-Bis(methoxycarbonyl)-N-[(2-methyl-2-phenylcyclopropyl)methyl]hydroxylamine (trans-12). The analogous procedure for preparating diacylated hydroxylamines was followed, and trans- 12 was obtained in 73% yield: IR (film) 1795, $1731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.4,5.0 \mathrm{~Hz})$, 1.16 (dd, $1 \mathrm{H}, \mathrm{J}=9.1,5.0 \mathrm{~Hz}), 1.3-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, 3.71 (dd, $1 \mathrm{H}, \mathrm{J}=15.1,8.1 \mathrm{~Hz}), 4.01(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.1,6.1 \mathrm{~Hz})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 18.3, 20.6, 22.6, 24.7, 50.7, 53.6, 56.0, 125.8, 127.1, 128.2, 147.0, 154.8, 156.2; MS m/z (rel intensity) 293 (15, M ${ }^{+}$), 144 (100), 59 (43). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}: \mathrm{C}, 61.46 ; \mathrm{H}, 6.53 ; \mathrm{N}, 4.78$. Found: C, 61.35; H, 6.64; N, 4.70.

By the general method for FVT, trans-12 (293 mg, 1 mmol) gave 13 in 61% yield (132 mg) as white solid, whereas cis- 12 ($293 \mathrm{mg}, 1 \mathrm{mmol}$) gave $13 \mathrm{in} 43 \%$ yield (93 mg) and $14 \mathrm{in} \mathrm{7} \mathrm{\%}$ yield (15 mg).

Methyl 4-phenyl-cis-1,4-pentadienylcarbamate (13): white solid; mp 55-56 ${ }^{\circ} \mathrm{C}$ (hexane); IR (film) 3318, $1712 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.16(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.73(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.77(\mathrm{br} \mathrm{q}$, $1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 6.3-6.8(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, 7.3-7.5 (m, 5H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 31.4,52.5,105.7,112.8$, 123.9, 125.9, 127.7, 128.3, 140.5, 145.5, 154.2; MS m/z (rel intensity) $217\left(31, \mathrm{M}^{+}\right), 142$ (100), 59 (42). Anal. Calcd for C_{13} $\mathrm{H}_{15} \mathrm{NO}_{2}$: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.68; H, 6.98; N, 6.48.

N-(Methoxycarbonyl)-5-methyl-5-phenyl-2-pyrroline (14): IR (film) $1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for major rotamer $\delta 1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.8-2.9(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.9-5.0$ (br m, 1H), 6.6-6.7 (br m, 1H), 7.2-7.5 (m,5H); MS m/z (rel intensity) 217 (25, M ${ }^{+}$), 77 (23), 59 (100); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15}-$ $\mathrm{NO}_{2}\left[\mathrm{M}^{+}\right]$217.1103, found 217.1104.

Acknowledgment. We would thank the National Science Council, R.O.C. (NSC 86-2113-M-006-012), for support of this research.

Supporting Information Available: ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{7}$ and $9-\mathbf{1 3}$ (40 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O961786F

[^0]: (1) Ellis, R. J.; Frey, H. M. J . Chem. Soc. 1964, 5578.
 (2) (a) Parziale, P. A.; Berson, J. A. J. Am. Chem. Soc. 1990, 112, 1650. (b) Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc. 1988, 110, 2089. (c) Pegg, G. G.; Meehan, G. V. Aust. J . Chem. 1990, 43, 1071. (d) Pegg, G. G.; M eehan, G. V. Aust. J. Chem. 1990, 43, 1357. (e) Piers, E.; Maxwell, A. R. Can. J. Chem. 1984, 62, 2392. (f) Piers, E.; Nagakura, I.; Shaw, J. E. J. Org Chem. 1978, 43, 3431. (g) Somfai, P.; Ahman, J. Tetrahedron Lett. 1995, 36, 1953. (h) Ahman, J.; Somfai, P.; Tanner, D. J. Chem. Soc., Chem. Commun. 1994, 2785. (i) Trost, B. M.; Ornstein, P. L. J . Org. Chem. 1982, 47, 748. (j) Pattenden, G.; Whybrow, D. J. Chem. Soc., Perkin Trans. 1 1981, 3147. (k) Naf, F.; Decorzant, R. Helv. Chim. Acta 1978, 61, 2524. (I) Watson, J. M.; Irvine, J . L.; Roberts, R. M. J. Am. Chem. Soc. 1973, 95, 3348. (m) Klumpp, G. W.; Schakel, M. Tetrahedron Lett. 1983, 24, 4595. (n) Mazzocchi, P. H.; Tamburin, H. J. Am. Chem. Soc. 1975, 97, 555. (o) J orgenson, M. J.; Thacher, A. F. Tetrahedron Lett. 1969, 4651. (p) Frey, H. M.; Solly, R. K. Int. J. Chem. Kinet. 1969, 1, 473.
 (3) (a) Piers, E.; Maxwell, A. R.; Moss, N. Can. J . Chem. 1985, 63, 555. (b) Ohloff, G. Tetrahedron Lett. 1965, 3795.
 (4) (a) Wilson, S. R.; Zucker, P. A. J . Org. Chem. 1988, 53, 4682. (b) Corey, E. J.; Yamamoto, H.; Herron, D. K.; Achiwa, K. J . Am. Chem. Soc. 1970, 92, 6635. (c) Hudlicky, T.; Koszyk, F. J.; Kutchan, T. M.; Sheth, J. P. J. Org. Chem. 1980, 45, 5020. (d) Corey, E. J.; Herron, D. K. Tetrahedron Lett. 1971, 1641.
 (5) Wu, P. L.; Wang, W. S. J. Org. Chem. 1994, 59, 622.
 (6) (a) Anciaux, A. J .; Hubert, A. J.; Noels, A. F.; Petiniot, N.; Teyssie, P. J. Org. Chem. 1980, 45, 695. (b) Doyle, M. P.; Tamblyn, W' H.; Bagheri, V. J . Org. Chem. 1981, 46, 5094. (c) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J . Am. Chem. Soc. 1991, 113, 726.

[^1]: (10) (a) Schlag, E. W.; Rabinovitch, B. S. J. Am. Chem. Soc. 1960, 82, 5996. (b) Elliote, C. S.; Frey, H. M. J. Chem. Soc. 1964, 900. (c) Willcott, M. R.; Cargle, V. H. J. Am. Chem. Soc. 1967, 89, 723.

[^2]: (11) Baldwin, J. E.; Chang, G. E. C. Tetrahedron 1982, 38, 825.
 (12) Kennewell, P.'D.; Matharu, S. S.; Taylor, J. B.; Westwood, R.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1 1982, 2553.
 (13) Baldwin, J. E.; Patapoff, T. W.; Barden, T. C. J. Am. Chem. Soc. 1984, 106, 1421.
 (14) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
 (15) Bousquet, E. W. Organic Synthesis; Wiley: New York, 1943; Collect. Vol. II, p 313.

